Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Clin Pediatr (Phila) ; 61(2): 150-158, 2022 02.
Article in English | MEDLINE | ID: covidwho-1511594

ABSTRACT

Background. This case-control study aims to investigate the clinical characteristics in pediatric patients with pneumonia infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A, and human adenoviruses (HAdVs). Methods. Hospitalized pediatric patients with pneumonia infected with SARS-CoV-2 at Wuhan Children's Hospital and pneumonia infected with influenza A, and HAdVs at Qilu Children's Hospital were compared. Clinical manifestations, laboratory examinations, and imaging characteristics were analyzed. Results. The proportions of hyperpyrexia (54.3%, 33.9%), cough (100%, 99.2%), wheezing (45.7%, 53.7%), diarrhea (31.4%, 14.9%), and fever (100%, 75.2%) in patients with influenza A and HAdVs were higher than those of patients with SARS-CoV-2 (9.4%, P < .001; 48.5%, P < .001; 0%, P < .001; 8.8%, P = .002; 41.5%, P < .001; respectively). Laboratory examinations revealed the proportions of leukocytosis (37.1%, 52.9%), abnormal rates of neutrophils (40%, 40.5%), and lymphocytosis (42.9%, 65.3%) in influenza A and HAdV pneumonia groups were significantly higher than coronavirus disease 2019 (COVID-19) group (0%, P < .001; 0%, P < .001; 0%, P < .001; respectively). The proportion of elevated procalcitonin (5.7%, 14%) in patients with influenza A and HAdVs was significantly lower than those in patients with SARS-CoV-2 (64%, P < .001). In chest computed tomography, ground-glass opacities near the pleura were more common in patients with COVID-19 than those in patients with influenza A and HAdVs (32.7% vs 0% vs 0%, P < .001). Conclusion. Fever, cough, and wheezing are more common in the influenza A and HAdVs groups, whereas procalcitonin and computed tomography findings are likely to be pronounced in COVID-19 pneumonia. It provides a variety of methods except polymerase chain reaction for differentiating COVID-19 pneumonia from influenza A and HAdVs pneumonia.


Subject(s)
Adenovirus Infections, Human/physiopathology , COVID-19/physiopathology , Child, Hospitalized/statistics & numerical data , Influenza, Human/physiopathology , Pneumonia/physiopathology , Adenovirus Infections, Human/epidemiology , Adolescent , COVID-19/epidemiology , Case-Control Studies , Child , Child, Preschool , China/epidemiology , Female , Humans , Infant , Infant, Newborn , Influenza A virus/pathogenicity , Influenza, Human/epidemiology , Male , Pneumonia/epidemiology , Pneumonia/etiology , Retrospective Studies
2.
Acta Med Acad ; 49(2): 130-143, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1414828

ABSTRACT

In this review, we discuss the latest developments in research pertaining to virus-induced asthma exacerbations and consider recent advances in treatment options. Asthma is a chronic disease of the airways that continues to impose a substantial clinical burden worldwide. Asthma exacerbations, characterised by an acute deterioration in respiratory symptoms and airflow obstruction, are associated with significant morbidity and mortality. These episodes are most commonly triggered by respiratory virus infections. The mechanisms underlying the pathogenesis of virus-induced exacerbations have been the focus of extensive biomedical research. Developing a robust understanding of the interplay between respiratory viruses and the host immune response will be critical for developing more efficacious, targeted therapies for exacerbations. CONCLUSION: There has been significant recent progress in our understanding of the mechanisms underlying virus-induced airway inflammation in asthma and these advances will underpin the development of future clinical therapies.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Antiviral Agents/therapeutic use , Asthma/drug therapy , Respiratory Tract Infections/drug therapy , Virus Diseases/drug therapy , Adenovirus Infections, Human/drug therapy , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/physiopathology , Administration, Inhalation , Asthma/immunology , Asthma/physiopathology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Disease Progression , Humans , Influenza, Human/drug therapy , Influenza, Human/immunology , Influenza, Human/physiopathology , Interferon-beta/therapeutic use , Macrolides/therapeutic use , Omalizumab/therapeutic use , Paramyxoviridae Infections/drug therapy , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/physiopathology , Picornaviridae Infections/drug therapy , Picornaviridae Infections/immunology , Picornaviridae Infections/physiopathology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/physiopathology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/physiopathology , Virus Diseases/immunology , Virus Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL